Features

- Organized as 2M x 8 bits
- Single 3.3V Power Supply
- Stacks of 16 SRAM 128K x 865609E Die
- Access Time: 40 ns
- Very Low Power Consumption
 - Active: 100 mW (Typ)
 - Standby: 1 mW (Typ)
- TTL-Compatible Inputs and Outputs
- Die Designed on 0.35 Micron Process
- Latch-up Immune
- 200 Krads (TM1019.5)
- Wide Temperature Range 55°C to +125°C
- Built and Tested by 3D+, using 3D+ Die Stacking Technology

Description

The AT61162E is a Rad Tolerant module, highly-integrated and very low-power CMOS static RAM organized as $2M \times 8$ bits. It is organized with 16 banks of 1 Mbit. Each bank has a 8-bit interface and is selected with 16 specific \overline{CS} : 0 - 15. Banks are selectable by pairs with 8 specific BS: 0 - 7.

This module takes full benefit of the 3D+ cube technology, and it is assembled and tested by 3D+, using Atmel 65609E 1-Mbit SRAM die: it is built with 8 layers, each one housing 2 dies. 10 nF decoupling capacitors are embedded for each memory die.

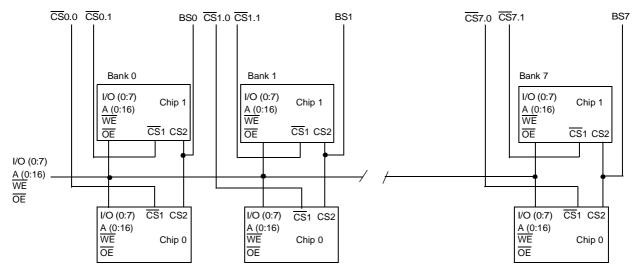
This module brings the solution to applications where fast computing is as mandatory as low power consumption, for example: space electronics, portable instruments, or embarked systems.

AT61162E is processed according to the methods of the latest revision of the MIL PRF 38535, QML N (QML Q counterpart for plastic).

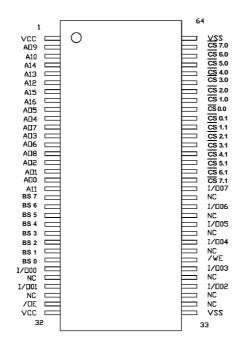
The package is a 64 gull wing pins dual in line, 11 mm wide, 28 mm long and 14.3 mm height and 0.8 mm pin pitch.

Rad Hard 2-Mbit x 8 SRAM Cube

AT61162E


Preliminary

Rev. 4157B-AERO-06/02



Block Diagram

Pin Configuration

Pin Description

Pin Name	Function
AO - A16	Address Inputs
WE	Write Enable
ŌĒ	Output Enable
<u>CS</u> 0.0 - <u>CS</u> 7.1	Chip Select 1
BS0 - BS7	Chip Select 2
1/00 - 1/07	Data Inputs/Outputs
V _{cc}	3.3V Power
GND	Ground
NC	No Connection

Truth Table

	BS _x	WE	ŌE	Inputs/ Outputs	Mode
All CS H	_	-	-	Z	Deselect/ Power-down
_	All BS L	_	-	Z	Deselect/ Power-down
CS y.z: L Other CS: H	BSy: H Other BS: –	Н			Read
CS y.z: L CS y.z: H Other CS: –	BSy: H Other BS: L		L	Data out	(Bank y.z selected)
CS y.z: L Other CS: H	BSy: H Other BS: –				Write
CS y.z: L CS y.z: H Other CS: –	BSy: H Other BS: L	L	_	Data in	(Bank y.z selected)
CS y.z: L Other CS: H	BSy: H Other BS: –				
CS y.z: L CS y.z: H Other CS: –	BSy: H Other BS: L	Н	н	Z	Output Disable

*Note:

Electrical Characteristics

Absolute Maximum Ratings*

Supply Voltage to GND Potential 0.5 to +5V
DC Input Voltage GND GND -0.3 to $V_{\rm CC} 0.3 V$
DC Output Voltage high-Z-State GND GND -0.3 to V_{CC} +0.3V
Storage Temperature65 to +150°C
Output Current into Outputs (Low) 20 mA
Electro Statics Discharge Voltage
(MIL STD 883D method 3015.3)>1500V

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Operating Range

	Operating Temperature Operating V	
Military	-55°C to 125°C	3.3V ± 0.3V

Recommended DC Operating Conditions

Parameter	arameter Description		Тур	Max	Units
V _{cc}	Supply Voltage	3	3.3	3.6	V
Gnd	Ground	0	0	0	V
V _{IH}	Input High Voltage	2.2	-	V _{CC} +0.3	V
V _{IL}	Input Low Voltage	GND-0.3	0.0	0.8	V

Capacitance

Parameter	Description	Min	Тур	Мах	Unit
C _{IN} ⁽¹⁾	Input Low Voltage	-	-	8	pF
C _{OUT} ⁽¹⁾	Output High Voltage	-	-	8	pF

Note: 1. Guaranteed but not tested.

DC Parameters

Parameter	Description	Min	Тур	Мах	Unit
I _{IX} ⁽¹⁾	Input Leakage Current	-16	-	16	μA
I _{OZ} ⁽¹⁾	Output Leakage Current	-16	-	16	μA
V _{OL} ⁽²⁾	Output Low Voltage	-	-	0.4	V
V _{OH} ⁽³⁾	Output High Voltage	2.4	-	-	V

1. Gnd < V_{IN} < V_{CC} , Gnd < V_{OUT} < V_{CC} Output Disabled.

2. V_{CC} min. IOL = 1 mA.

3. V_{CC} min. IOH = -0.5 mA.

Consumption

Symbol	Description	61162E-35	Unit	Value
ICCSB ⁽¹⁾	Standby Supply Current	40	mA	max
ICCSB ₁ ⁽²⁾	Standby Supply Current	32	mA	max
ICCOP ⁽³⁾	Dynamic Operating Current	90	mA	max

1. $\overline{CS}_{0.0} - \overline{CS}_{7.1} \ge V_{IH} \text{ or } BS_0 - BS7 \le V_{IL} \text{ and } \overline{CS}_{0.0} - \overline{CS}_{7.1} \le V_{IL}.$

2. $\overline{CS}_{0.0} \ge V_{CC} - 0.3V \text{ or, } BS_0 - BS7 < Gnd + 0.3V \text{ and } \overline{CS}_{0.0} - \overline{CS}_{7.1} \le 0.2V$

3. One bank active (F = $1/T_{AVAV}$, $I_{OUT} = 0$ mA, $\overline{W} = \overline{OE} = V_{IH}$, $V_{IN} = Gnd/V_{CC}$, V_{CC} max.), other banks stand by TTL (note 1) or CMOS (note 2).

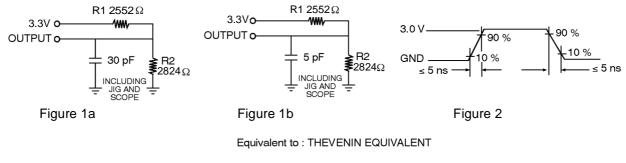
Write Cycle

Symbol	Parameter	61162E-40	Unit	Value
t _{AVAW}	Write cycle time	40	ns	min
t _{AVWL}	Address set-up time	0	ns	min
t _{AVWH}	Address valid to end of write	35	ns	min
t _{DVWH}	Data set-up time	35	ns	min
t _{E1LWH}	\overline{CS}_1 low to write end	35	ns	min
t _{E2HWH}	CS ₂ high to write end	35	ns	min
t _{WLQZ}	Write low to high-Z ⁽¹⁾	20	ns	max
t _{WLWH}	Write pulse width	35	ns	min
t _{WHAX}	Address hold from to end of write	+3	ns	min
t _{WHDX}	Data hold time	0	ns	min
t _{WHQX}	Write high to low-Z $^{(1)}$	0	ns	min

Note: 1. Parameters guaranteed, not tested, with output loading 5 pF (see 1b in Figure: AC Test Loads Waveforms).

Read Cycle

Symbol	Parameter	61162E-40	Unit	Value
t _{AVAV}	Read cycle time	40	ns	min
t _{AVQV}	Address access time	40	ns	max
t _{AVQX}	Address valid to low-Z	3	ns	min
t _{E1LQV}	Chip-select ₁ access time	40	ns	max
t _{E1LQX}	$\overline{\text{CS}}_1$ low to low-Z ⁽¹⁾	3	ns	min
t _{E1HQZ}	$\overline{\text{CS}}_1$ high to high-Z ⁽¹⁾	20	ns	max
t _{E2HQV}	Chip-select ₂ access time	40	ns	max
t _{E2HQX}	CS ₂ high to low-Z ⁽¹⁾	3	ns	min
t _{E2LQZ}	CS_2 low to high-Z ⁽¹⁾	20	ns	max
t _{GLQV}	Output Enable access time	15	ns	max
t _{GLQX}	OE low to low-Z ⁽¹⁾	0	ns	min
t _{GHQZ}	\overline{OE} high to high-Z ⁽¹⁾	10	ns	max


Note: 1. Parameters guaranteed, not tested, with output loading 5 pF (see 1b in page Figure: AC Test Loads Waveforms).

AC Parameters

AC Test Conditions

Input Pulse Levels:	.GND to 3.0V
Input Rise/Fall Times:	.5 ns
Input Timing Reference Levels:	.1.5V
Output Loading I_{OL}/I_{OH} (see figures 1a and 1b)	.+30 pF

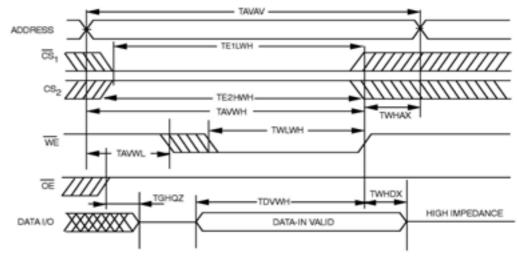
AC Test Loads Waveforms

Data Retention Mode

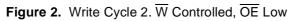
Atmel CMOS RAM's are designed with battery backup in mind. Data retention voltage and supply current are guaranteed over temperature. The following rules ensure data retention:

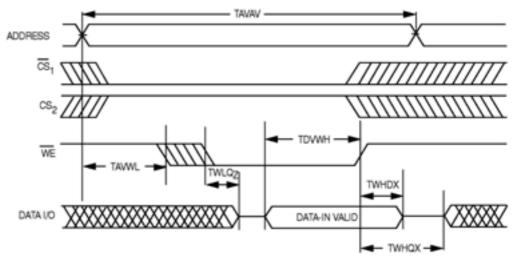
- 1. During data retention $\overline{\text{CS}}$ must be held high within V_{CC} to V_{CC} -0.2V or, chip select BS must be held down within GND to GND +0.2V.
- Output Enable (OE) should be held high to keep the RAM outputs high impedance, minimizing power dissipation.
- 3. During power up and power down transitions \overline{CS} and \overline{OE} must be kept between V_{CC} + 0.3V and 70% of V_{CC}, or with BS between GND and GND -0.3V.
- 4. The RAM can begin operation > TR ns after V_{CC} reaches the minimum operation voltages (3V).

Timing

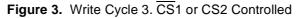


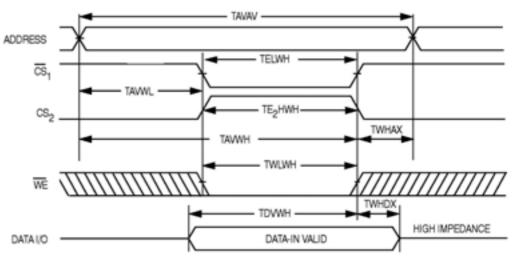
Data Retention Characteristics

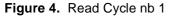

Parameter	Description	Min	Typical T _A = 25°C	Мах	Unit
V _{CCDR}	V _{CC} for data retention	2.0	-	-	V
t _{cdr}	Chip deselect to data retention time	0.0	-	-	ns
t _R	Operation recovery time	t _{AVAV} ⁽¹⁾	-	-	ns
I _{CCDR1} ⁽²⁾	Data retention current at 2.0V	_	0.160	16	mA

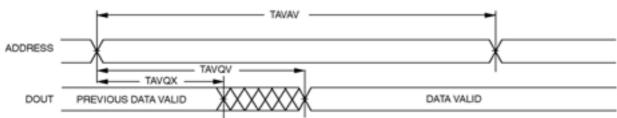

Notes: 1. T_{AVAV} = Read Cycle Time

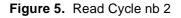
2. All $\overline{\text{CS}} = \text{V}_{\text{CC}}$ or All BS = $\overline{\text{CS}} = \text{GND}$, $\text{V}_{\text{IN}} = \text{Gnd}/\text{V}_{\text{CC}}$.

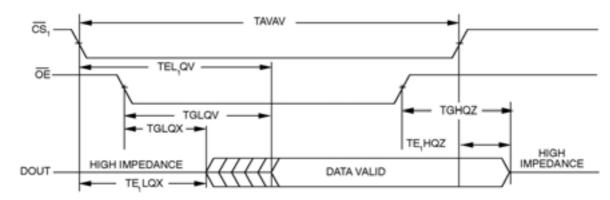

Figure 1. Write Cycle 1. \overline{W} Controlled, \overline{OE} High During Write



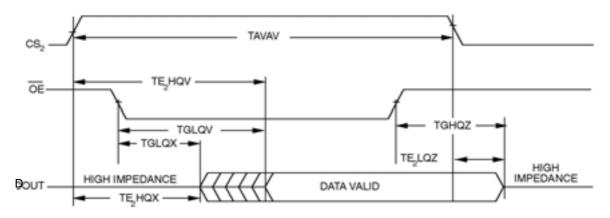






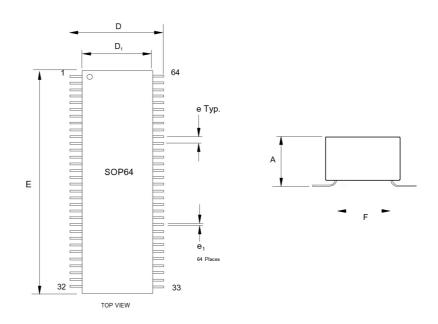


Note: The internal write time of the memory is defined by the overlap of CS_1 Low and CS_2 HIGH and \overline{WE} LOW. Both signals must be activated to initiate a write and either signal can terminate a write by going in actived. The data input setup and hold timing should be referenced to the activated edge of the signal that terminates the write. Data out is high impedance if $\overline{OE} = V_{IH}$.



10 AT61162E

Figure 6. Read Cycle nb 3


Test Tools

Supplier	Reference Number	
ENPLAS	OTS - 64 - 0.8 - 04	

Ordering Information

Reference Number	Temperature Range	Speed	Package	Quality Flow
AT61162E-PM40MMN	-55 to +125°C	40 ns	Cube 64 pins	QML N
AT61162E-PM40M-E	25°C	40 ns	Cube 64 pins	Engineering Samples

Package Drawing

Dimensions (mm)	Min	Мах	
А	14.0	14.60	
D	13.60	13.80	
D1	10.75	11.15	
Е	27.80	28.20	
F	7.5		
e	0.80		
e1	0.35		

Atmel Headquarters

Corporate Headquarters

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

e-mail

literature@atmel.com

Web Site

http://www.atmel.com

© Atmel Corporation 2002.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

ATMEL® is a registered trademark of Atmel.

Other terms and product names may be the trademarks of others.

Printed on recycled paper.